Use of POS tagger like Mecab and Chasen is considered necessary for segmentation of Japanese texts because words are not separated by spaces like European languages, but I recently learned this is not always the case. When I was testing quanteda‘s tokenization function, I passed a Japanese text to it without much expectation, but the […]
Stringiによる日本語と中国語のテキストの分かち書き
MecabやChasenなどのによる形態素解析が、日本語のテキストの分かち書きには不可欠だと多くの人が考えていますが、必ずしもそうではないようです。このことを知ったのは、quantedaのトークン化の関数を調べている時で、日本語のテキストをこの関数に渡してみると、単語が Mecabと同じように、きれいに単語に分かれたからです。 > txt_jp quanteda::tokens(txt_jp) tokens from 1 document. Component 1 : [1] “政治” “と” “は” “社会” “に対して” “全体” “的” “な” [9] “影響” “を” “及” “ぼ” “し” “、” “社会” “で” [17] “生きる” “ひとりひとり” “の” “人” “の” “人生” “に” “も” [25] “様々” “な” “影響” “を” “及ぼす” “複雑” “な” “領域” [33] “で” “ある” “。” quantedaには、形態素解析の機能がないのですが、そのトークン化関数は、中国語のテキストもきれいに、分かち書きをしたのは意外でした。 > txt_cn […]
Visualizing media representation of the world
I uploaded an image visualizing foreign news coverage early this year, but I found that the the image is very difficult to interpret, because both large positive and negative values are important in SVD. Large positive values can be results of intense media attention, but what large negative values mean? A solution to this problem […]
ITAR-TASS’s coverage of annexation of Crimea
My main research interest is estimation of media biases using text analysis techniques. I did a very crude analysis of ITAR-TASS’s coverage of the Ukraine crisis two years ago, but it is time to redo everything with more sophisticated tools. I created a positive-negative dictionaries for democracy and sovereignty, and applied them to see how […]