
Speed Up Topic Modeling 1

Speed Up Topic Modeling: Distributed Computing and Convergence Detection for LDA

Kohei Watanabe

Waseda University

May 2023

 Topic models have been widely used by political scientists, but the high computational

costs of the algorithms often prevent them from analyzing large corpora without aggressive data

simplification. Therefore, I have developed the seededlda package that has distributed computing

and convergence detection mechanisms, both of which dramatically speed up Latent Dirichlet

allocation (LDA) by processing small chunks of data in parallel or by terminating Gibbs

sampling when topic assignment becomes stable. Through systematic evaluation of the

algorithms using a corpus 10,000 news articles, I demonstrate that they not only jointly reduce

the time for identifying 100 topics from over one hour to about five minutes but also produce

results very similar to that of the standard LDA. I argue that these faster algorithms are useful in

not only identifying topics of documents but also generating document vectors as low

dimensional representation of their content for other computational analysis.

Speed Up Topic Modeling 2

Introduction

Topic models have been widely used by political scientists to analyze textual data. The

algorithms can automatically identify clusters of words as topics in many domains and

languages, but it is widely recognized by the users that the algorithms are computationally

expensive: Latent Dirichlet allocation (LDA) usually take much longer time to perform the tasks

than simpler algorithms such as Latent Semantic Analysis (Deerwester et al., 1990); variants of

LDA are usually even more computationally expensive due to the additional parameters that

need to be estimated.1 The long execution time often forces users to perform aggressive feature

selection before fitting models, potentially leading to biased results (Denny & Spirling, 2018).

There are at least two ways to speed up topic modeling without aggressive data

simplification: the first is employing distributed computing, in which data is split into smaller

chunks and allocated to multiple processors; the second is applying convergence detection, with

which the iterative Gibbs sampling can be interrupted when parameters become sufficiently

stable. Both are very effective ways to speed up topic modeling, but there are only a few

software programs that implement these algorithms.

I have implemented distributed computing and convergence detection algorithms in the

seededlda package to allow political scientists to apply topic modeling to a large corpus of texts.

My systematic evaluation shows that the distributed computing alone makes topic modeling

significantly faster; the convergence detection also cuts the execution time more than the half;

despite the dramatic speed up, the results produced with these algorithms are very similar to that

of the standard LDA (Heinrich, 2008).

Speed Up Topic Modeling 3

Algorithms

I have implemented a distributed LDA algorithm that dramatically speeds up topic

modeling when multiple processors are available, but it performs Gibbs sampling in the same

sequence as the standard LDA algorithm when only a single processor is used. It is also general

enough to fit the variants of LDA such as Seeded LDA (Lu et al., 2011), which can classify texts

into pre-defined topics, and Sequential LDA (Du et al., 2012), which can classify individual

sentences of texts. Following the notation in Watanabe & Baturo (2023), I explain the algorithm

in concise manner with the aid of the pseudocode (Figure 1). I implemented the algorithm in

C++ using the Intel Thread Building Block (TBB) library for parallel computing.

Distributed Computing

Among several distributed LDA algorithms that have been proposed, the Approximately

Distributed LDA (Newman et al., 2009) is chosen for its simplicity and generalizability. It

assigns topics of words in the same way as the standard LDA but splits data into smaller chunks

and performs Gibbs sampling on multiple processors in parallel.

In inferring the document-topic distribution 𝜃𝜃 and topic-word distribution 𝜙𝜙, topics

assigned by the Gibbs sampler are saved in 𝑀𝑀𝑑𝑑𝑑𝑑 and 𝑁𝑁𝑘𝑘𝑘𝑘. The former is the frequency of topic 𝑘𝑘

to be found in document 𝑑𝑑; the latter is the frequency of topic 𝑘𝑘 to be assigned to unique word 𝑣𝑣;

𝛼𝛼 and 𝛽𝛽 are the hyper-parameters for smoothing:

𝜃𝜃𝑑𝑑𝑑𝑑 = P(𝑍𝑍 = 𝑘𝑘|𝑑𝑑)

=
𝑀𝑀𝑑𝑑𝑑𝑑 + 𝛼𝛼
𝑀𝑀𝑑𝑑. + 𝛼𝛼|𝐾𝐾|

𝜙𝜙𝑘𝑘𝑘𝑘 = P(𝑊𝑊 = 𝑣𝑣|𝑘𝑘)

=
𝑁𝑁𝑘𝑘𝑘𝑘 + 𝛽𝛽
𝑁𝑁.𝑣𝑣 + 𝛽𝛽|𝑉𝑉|

Speed Up Topic Modeling 4

While 𝑁𝑁𝑘𝑘𝑘𝑘 and 𝑀𝑀𝑑𝑑𝑑𝑑 are global variables shared by all the processors, each subprocess 𝑝𝑝 =

{1,2,⋯ ,𝑃𝑃} has a local variable to record topics assignment 𝑁́𝑁𝑘𝑘𝑘𝑘𝑘𝑘. In every 10 iterations, these

local counts are added to the global variable to synchronize the inference between processors.

Convergence Detection

Due to the difficulty in detecting the convergence of parameters in Gibbs sampling

(Gelman & Rubin, 1992), it is common to set a fixed number of iterations in topic modeling. The

numbers should be high enough (usually between 1,000 and 3,000) to make the topics in 𝜙𝜙

distinctive from each other, but the iteration could be interrupted earlier if topic assignment

become stable enough. There are multiple methods to measure quality of topics (e.g., perplexity

and divergence), they are unsuitable for this purpose due to its computational costs.

I propose the delta statistic as an efficient convergence detection criterion for LDA. It

measures stability of topic assignment by comparing current and previous topics 𝛿𝛿𝑖𝑖 = �𝑧𝑧𝑗𝑗 ≠ 𝑧𝑧𝑗𝑗−1�

and continues Gibbs sampling as long as the statistic is decreasing 𝛿𝛿𝑖𝑖 ≤ 𝛿𝛿𝑖𝑖−1.2 Since the statistic

tend to fall quickly in the first a few hundred iterations, it can reduce the computational cost even

if a single processor is available. In parallel computing, the local delta 𝛿́𝛿𝑖𝑖𝑖𝑖 = �𝑧𝑧𝑗𝑗 ≠ 𝑧𝑧𝑗𝑗−1� can be

computed in the last sub-iteration 𝑗𝑗 = 10 and added to the global delta 𝛿𝛿𝑖𝑖 to detect convergence.

2 After convergence, 𝛿𝛿 tend to fluctuate around zero because words that only have weak semantic
association with others receive different topics each time.

Speed Up Topic Modeling 5

for (1 ≤ 𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 10⁄) {
 assign 𝐷𝐷 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 documents to processor 𝑝𝑝
 parallel_for (1 ≤ 𝑗𝑗 ≤ 10) {
 sample topic for words in the batch: 𝑧𝑧𝑗𝑗 ← gibbs_sample(𝑁𝑁𝑘𝑘𝑘𝑘 ,𝑀𝑀𝑑𝑑𝑑𝑑,𝛼𝛼,𝛽𝛽)
 if (𝑗𝑗 = 10) {
 count topic changes: 𝛿́𝛿𝑖𝑖𝑖𝑖 ← �𝑧𝑧𝑗𝑗 ≠ 𝑧𝑧𝑗𝑗−1�
 }
 return 𝑁́𝑁𝑘𝑘𝑘𝑘𝑘𝑘, 𝛿́𝛿𝑖𝑖𝑖𝑖
 }
 synchronize topic-word count: 𝑁𝑁𝑘𝑘𝑘𝑘 ← 𝑁́𝑁𝑘𝑘𝑘𝑘1 + 𝑁́𝑁𝑘𝑘𝑘𝑘2 + ⋯+ 𝑁́𝑁𝑘𝑘𝑘𝑘𝑘𝑘
 aggregate topic changes: 𝛿𝛿𝑖𝑖 ← 𝛿́𝛿𝑖𝑖1 + 𝛿́𝛿𝑖𝑖2 + ⋯+ 𝛿́𝛿𝑖𝑖𝑖𝑖
 if (𝛿𝛿𝑖𝑖 ≤ 𝛿𝛿𝑖𝑖−1) {
 exit
 }
}

Figure 1: Pseudocode of the proposed algorithms. Topics are sampled 𝑚𝑚𝑚𝑚𝑚𝑚_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 times if is
convergence detection is disabled; 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 determines the sizes of the batches; 𝐷𝐷 is the total
number of documents in the corpus.

Evaluation

I evaluated the distributed computing and the convergence detection mechanisms in terms

of how much they can speed up topic modeling and how much they change the result of

inference by fitting models on a sample of 10,000 the Guardian newspapers articles.3 I fitted the

models with 100 topics on a computer using between 1 and 16 physical processors, recorded

their execution time and compared their results with that of the standard LDA model.4 The

convergence detection mechanism and the sequential classification algorithm (Sequential LDA)

were enabled or disabled; when the sequential algorithm is enabled, the documents are 391,395

3 I preprocess the textual data using the quanteda package (Benoit et al., 2018). I segmented texts based
on the ICU rules; removed punctuation, symbols, numbers, email addresses; remove grammatical words
and single letters; remove tokens that occur less than 10 times in the corpus. The resulting document-
feature matrix contains 4.7 million tokens (27,532 unique types).

4 I used Ubuntu 22.04 on Microsoft Azure Virtual Machine (F16s v2, 16 CPUs, 32 GB RAM).

Speed Up Topic Modeling 6

sentences from the articles; Gibbs sampling was limited to 1,000 iterations; a small number of

seed words are given to the models to align topics for direct comparison.5 In addition to these, I

fitted benchmark models by disabling the distributed computing and the convergence detection.

Figure 2 shows that the average execution time is around 3,300 seconds in the non-

sequential models and 4,500 seconds in the sequential models when only one processor is used,

but it becomes around 7 times shorter as the number of processors increases to 8. The rate of

speed up decreases after 8 processors, but the execution time becomes 8 times shorter than the

original in both models when all the 16 processors are used. When the convergence detection is

enabled, the execution time becomes an additional 2 to 3 times shorter in the non-sequential

model, but it does not affect the sequential models.

Figure 3 illustrates the average Jansen-Shannon divergence between corresponding topic

vectors in the 𝜙𝜙 parameter (topic-word association) of the fitted models. Despite the much

shorter execution time, the divergence scores are consistently around 0.14 in the sequential

models and 0.10 in the non-sequential models. Importantly, the divergence scores are roughly the

same even when Gibbs sampling is terminated earlier by the convergence detection mechanism

in the non-sequential models. This suggests that the results produced by the faster models are

very similar to those by the benchmark models.6

5 I fitted the standard LDA to identify 100 topics and extracted top 10 words from each topic as seed
words. These seed words add very little computational costs, but they align the topics in all the fitted
models for direct comparison between them.

6 These divergence scores are also much lower than the distribution of non-self-pairs of topics, which
ranges between 0.32 and 0.65, in the benchmark models.

Speed Up Topic Modeling 7

Figure 2: The average execution time for sequential and non-sequential models. Sequential
classification is enabled when “sequential” is true (blue). Convergence detection is enabled when
“auto_iter” is true (triangles). The average execution time is computed by fitting the same model
10 times.

Speed Up Topic Modeling 8

Figure 3: The average Jansen-Shannon divergence of the 𝜙𝜙 parameter. Sequential classification
is enabled when “sequential” is true (blue). Convergence detection is enabled when “auto_iter” is
true (triangles). Divergence is computed by repeating the same model X times and comparing
with the 𝜙𝜙 parameter from the standard LDA model. The average divergence is computed by
fitting the same model 10 times.

Conclusions

I have demonstrated that distributed computing and convergence detection can slash

LDA’s execution time to identify 100 topics in a corpus of 10,000 news articles from over one

hour to about five minutes. This dramatic speed up allows users to perform topic modeling on

large and complex corpora without oversimplification of the data though aggressive feature

selection. I have also shown that, despite the dramatic reduction in the execution time, topics in

the models are very similar to those in the standard models. This allows users to replace the

standard models with the proposed models without the fear of producing invalid results in topic

modeling.

Speed Up Topic Modeling 9

The distributed algorithm accelerated roughly proportionally to the number of processors

only until it became eight. This is because the execution time within the parallel-for loop became

smaller compared to the overall execution time, and the overhead involving the parallel

computing such as synchronization and task scheduling became dominant. However, models

with larger number of topics would be benefited from the additional processors because a larger

𝐾𝐾 increases the execution time within the sub-processes.

The distributed algorithm is also useful in searching the optimal number of topics based

on the divergence measure proposed by Deveaud et al. (2014) because the algorithm has almost

no effect on the divergence of topics within the model. User should fit LDA models with varying

𝐾𝐾 to maximize the average divergence score in this optimization, but they are recommended to

disable convergence detection to gain a smooth curve.

The sequential and non-sequential models are affected by the convergence detection

mechanism differently when the maximum number of iterations is limited to 1,000. This

difference can be explained by the greater complexity of the sequential models, which would

require more than 1,000 iterations to converge. This suggests that the best practice with the

sequential models is setting the maximum number of iterations to 2,000 or more while enabling

convergence detection to avoid excessive iterations.

 Distributed computing is particularly beneficial in fitting the sequential model because it

can generate sentence vectors as a low dimensional representation of their content, which could

be used for other text analysis purposes (e.g., supervised machine learning). Depending on the

complexity of the data, the number of topics for sentence vectors would be much greater than

100 but the distributed algorithm is the most efficient with a large 𝐾𝐾.

Speed Up Topic Modeling 10

 I have implemented the proposed algorithms in the seededlda package and published it

on CRAN for easy access, but users should be aware that the distributed computing requires

physical processors instead of virtual processors. Although modern processors often have

multithreading capabilities (e.g., Intel Hyper-Threading), only an increase in the number of

physical processors can accelerate topic modeling. Further, although I split the data into chunks

that contain about 1% of the documents (i.e., each contains 100 articles or 3,913 sentences), the

batch size should be larger for smaller corpora to ensure that enough documents are allocated to

sub-processes to infer topics locally.

Finally, the distributed algorithm implemented in the package achieved speed up

equivalent to the level reported by Newman et al. (2007), but it could be even faster if the

overhead involving synchronization and task scheduling is minimized. More specifically, the

frequency of the synchronization could be less frequent, and the sizes of the batches could be

smaller to make the overall process faster, but these settings may impact the quality of the topic

inference. This should be investigated in future works.

References

Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., & Matsuo, A. (2018).

quanteda: An R package for the quantitative analysis of textual data. Journal of Open

Source Software, 3(30), 774. https://doi.org/10.21105/joss.00774

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harshman, R. A. (1990).

Indexing by latent semantic analysis. JASIS, 41(6), 391–407.

Speed Up Topic Modeling 11

Denny, M. J., & Spirling, A. (2018). Text Preprocessing For Unsupervised Learning: Why It

Matters, When It Misleads, And What To Do About It. Political Analysis, 26(2), 168–189.

https://doi.org/10.1017/pan.2017.44

Deveaud, R., Sanjuan, E., & Bellot, P. (2014). Accurate and Effective Latent Concept Modeling

for Ad Hoc Information Retrieval. Revue Des Sciences et Technologies de l’Information -

Série Document Numérique, 61–84. https://doi.org/10.3166/DN.17.1.61-84

Du, L., Buntine, W., Jin, H., & Chen, C. (2012). Sequential latent Dirichlet allocation.

Knowledge and Information Systems, 31(3), 475–503. https://doi.org/10.1007/s10115-

011-0425-1

Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple

Sequences. Statistical Science, 7(4), 457–472.

Heinrich, G. (2008). Parameter estimation for text analysis.

http://www.arbylon.net/publications/text-est.pdf

Lu, B., Ott, M., Cardie, C., & Tsou, B. K. (2011). Multi-aspect sentiment analysis with topic

models. 2011 IEEE 11th International Conference on Data Mining Workshops, 81–88.

Newman, D., Asuncion, A., Smyth, P., & Welling, M. (2009). Distributed Algorithms for Topic

Models. The Journal of Machine Learning Research, 10, 1801–1828.

Newman, D., Smyth, P., Welling, M., & Asuncion, A. (2007). Distributed Inference for Latent

Dirichlet Allocation. Advances in Neural Information Processing Systems, 20, 1081–

1088.

Watanabe, K., & Baturo, A. (2023). Seeded Sequential LDA: A Semi-Supervised Algorithm for

Topic-Specific Analysis of Sentences. Social Science Computer Review.

https://doi.org/10.1177/08944393231178605

	Introduction
	Algorithms
	Distributed Computing
	Convergence Detection

	Evaluation
	Conclusions
	References

