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Introduction  
The term “text as data” (Grimmer & Stewart, 2013) refers to quantitative analysis of digitalized texts to 

reveal properties of authors or the content of documents such as speech transcripts, election 

advertisements, government reports, newspaper articles, and social media posts. In political research, the 

methodology has been employed to measure, for example, the ideology of election candidates (Catalinac, 

2018), the fairness of treaties (Spirling 2012), the originality of bills (Jansa et al., 2018), the bias in news 

reporting (Watanabe, 2017), the diversity of news content (Amsalem et al., 2020) and the intensity of geo-

political threat (Trubowitz & Watanabe, 2021).  

Texts are sequence of words, but researchers can analyzed them statistically with natural language 

processing techniques. These techniques are implemented and made accessible through various software 

packages and libraries. The shift from print to online publishing and digitalization of documents in recent 

years made it possible for researchers to apply the methodology to a wide range of political documents. 

The increased capacity of personal computers to process large datasets also made quantitative text 

analysis more accessible. The latest development in machine learning techniques is making quantitative 

text analysis more useful, but it is also raising concerns and posing new challenges for researchers such as 

the disconnection between analysis and theory and the high cost to sufficiently train complex models. 

Historical overview 
The root of quantitative text analysis can be traced back to the 1960s, when The General Inquirer  (Stone 

et al., 1966) was created for dictionary analysis. The program searches the document for words that are 

registered in a pre-defined list of keywords called “dictionary”. In the following years, various 

dictionaries such as the Psychosociological Dictionary, Political Dictionary, and Anthropological 

Dictionary were created to answer specific theoretical questions. The General Inquirer, which runs on 

mainframe computers, was not widely used but it prompted development of similar software programs for 



dictionary analysis, which run on personal computers.1 Most importantly, the General Inquirer 

dictionaries are combined and modified to construct dictionaries such as the Linguistic Inquiry and Word 

Count (LIWC) and the Lexicoder Sentiment Dictionaries, which are still used by political scientists today. 

Quantitative text analysis in political science attracted broader attention in the 2000s, when new statistical 

analysis methods and data processing tools became available. Wordscores (Benoit & Laver, 2003) and 

Wordfish (Slapin & Proksch, 2008) were proposed to estimate ideological positions of authors; the Latent 

Dirichlet Allocation (Blei et al., 2003) and the Structural Topic Model (Roberts et al., 2014) were created 

to identify salient topics in documents. Open-source software packages for textual data processing and 

analysis were also developed in R or Python to apply these methods.2 

The development of the methodology reflects the recent advancement in natural language processing 

technologies and machine learning. The Unicode covers most of the languages and its library processes 

multi-lingual documents reliably and consistently; machine learning models can replicate human 

judgement accurately; neural networks, especially the deep learning models, further enhance the human-

like ability of machine learning models.3 Conventional machine learning models have been more 

common in quantitative text anlaysis, but neural networks have also been employed in recent works.4 

Characteristics of textual data 
Researchers employ a distinctive set of tools in quantitative text analysis because textual data in its 

original form is an unstructured sequence of symbols. This unique characteristic of textual data requires 

conversion of symbols into numbers and reduction of noises before applying statistical analysis methods. 

The preprocessing of texts results in two different forms, the “bag-of-words” or “string-of-words” 

representation, depending on the level of simplification. 

In preparation for statistical analysis, textual data is aggressively simplified based on the symbols or 

frequencies as feature selection. Symbol-based simplification includes deletion of common grammatical 

 
1  Software programs for dictionary-based analysis includes LIWC (Francis & Pennebaker, 1993), 
DICTION (North et al., 1999), Yoshicoder (Lowe, 2006) and Lexicoder (Young & Soroka, 2012). 
2 Software packages for quantitative text analysis includes tm (Feinerer et al., 2008), tidytext (Silge & 
Robinson, 2016), quanteda (Benoit et al., 2018), NLTK (Bird et al., 2009), Gensim (Rehurek & Sojka, 
2010). 
3 A greater number of neural network models are available in Python libraries that include Keras, Scikit 
Lean and PyTorch. 
4 See Wankmüller (2021) for an overview of neural network models in social research. Recent application 
in political research can be found in Zhang & Pan (2019), Chang & Masterson (2020) and Muchlinski et 
al. (2021). 

 



words (“stop words”), mechanical truncation of word endings (“stemming”), and substitution by 

uninflected forms of words (“lemmatization”); frequency-based simplification includes removal of very 

frequent or infrequent words. The dictionary analysis is also a type of symbol-based simplification of 

textual data.  

Bag-of-words representation 
Texts can be represented in a matrix (“document-feature” matrix) whose rows correspond to documents 

and whose columns correspond to unique words (“types”). This form of textual data is called “bag-of-

words” because the positions of words are discarded entirely. However, the bag-of-words representation 

is often sufficient for statistical analysis because it still records frequency of words in each document, the 

entire collection (“corpus”), and their co-occurrences in documents.  

In the bag-of-words representation, frequent or infrequent word can be easily identified by their overall 

frequencies (“term frequency”) or the number of documents the words occur (“document frequency”). It 

is also common to apply statistical measure such as Shannon entropy to select informative features.  

String-of-words representation 
Texts can also be represented as vectors of numeric identifiers (“tokens”) which corresponds to words in 

documents. This form of textual data can be called “string-of-words” because the relative positions of 

original words are preserved. With the sequence of words, statistical models can consider semantic or 

syntactical relationship between them to perform tasks more accurately. Many of the recently developed 

neural network models requires this form of data representation. 

The string-of-words representation requires larger storage space and greater computing power than the 

bag-of-words representation. Further, the simplification of data is also limited to symbol-based 

approaches as it does not offer information on frequency of words. Therefore, the size of documents (or 

the window) for statistical analysis must be small to avoid exponentially increase in computational costs. 

Analysis of textual data 
Researchers can find language phenomena in different levels using the methodology. The goals of 

analysis are, for example, revealing topic or sentiment of documents on the discourse level, identifying 

synonyms or antonyms on the semantic level, and extract multi-word expressions such as phrases on the 

lexical level.5 The discourse-level analysis is often the most important in political research, but semantic 

or lexical-level analysis is also performed as part of preprocessing data. Semantic-level analysis is 

 
5 See Liddy (2001) for more detailed discussion on language phenomena in natural language processing. 



performed using word-embedding models that compute semantic similarity accurately; lexical-level 

analysis is achieved by collocation analysis that discover strongly associated sequences of words.6 

Depending on the goals of the analysis and the available resources, researchers choose different 

approaches to textual data. Dictionary analysis is a symbolic and knowledge-based approach; both 

statistical analysis and machine learning are numeric and data-driven approaches, but the main goals are 

describing the relationship between words and documents in the statistical analysis while predicting 

classes or positions of documents in the machine learning.   

The results of the analysis are scrutinized by researchers to ensure the validity of the measurement. They 

should have patterns that consistent not with the existing knowledge (“face valid”) and values that 

correlates with the gold-standard (“criterion valid”), which are often created based on manual analysis. 

Dictionary analysis 
Dictionary analysis is still very popular for its technological simplicity. A dictionary is a long list of 

words that are nested under categories relates to concepts of interests. Researchers receive frequencies of 

categories (or keys) instead of original words from dictionary analysis. The result can be either manually 

interpreted or passed to statistical analysis methods.  

Researchers can produce meaningful results easily with a dictionary in both large and small collection of 

documents, because it is solely based on the pre-defined list of words. Several dictionaries are publicly 

available but use of them requires caution because validity of dictionary analysis depends on their 

suitability in target domains (Boukes et al., 2020; Grimmer & Stewart, 2013).7 When suitable dictionaries 

are unavailable, researchers must compile their own dictionary based on their knowledge of the content.8  

Statistical analysis 
After appropriate preparation of data, statistical analysis is performed to find association between words 

and documents. Simple frequency analysis or relative frequency analysis can be applied to documents to 

 
6 Popular word-embedding models are Latent Semantic Analysis (Deerwester et al., 1990) and Global 
Vector (Pennington et al., 2014). Collocation analysis can be performed by two-by-two association measure 
such as point-wise mutual information (PMI), chi-squared or log-likelihood statistic (Hoey, 2012). 
7 The English language has the largest collection of dictionaries that include the Regressive Imagery 
Dictionary (Martindale, 1975), the Lexicoder Sentiment Dictionary (Young & Soroka, 2012), the Moral 
Foundation Dictionary (Frimer et al., 2017), and Affective Norms for English Words (Nielsen, 2011).  
8 Published dictionaries usually contain hundreds of words, but corpus specific dictionaries can produce 
valid results with small number of words (Müller, 2020). See Watanabe and Zhou (2020) on the best 
practice in creating original dictionaries.  



understand the discourse.9 Collocation analysis identifies strongly associated sequences of multi-word 

expressions that includes phrases or proper names; identified multi-word expressions can be used to 

compound words to improve the bag-of-words representation of the data before applying other statistical 

analysis or machine learning methods.  

Clustering techniques can also be applied to group documents or words based on their discursive or 

semantic similarities. For example, high similarity between documents indicate that they are about the 

same subject or by the same author  (Jansa et al., 2018); changes in similarities between words reveals 

shifts in discourse (Rodman, 2020). Similar documents can also comprise a composite document in 

further statistical analysis; similar words can enter a dictionary as synonyms (Watanabe, 2020).10 

Machine learning 
Machine learning techniques are employed to automatically assign documents into classes (e.g. topics) or 

position them on a continuous scale (e.g. sentiment). Supervised learning algorithms replicate labeling or 

scoring of documents based on training on human-coded instances. Unsupervised learning algorithms 

distinguish between documents based on distribution of words without training instances. Semi-

supervised learning algorithms distinguish between documents based on both distribution of words and 

human-provided keywords.11 

The result of document classification or scaling by machine learning techniques depends not only on the 

algorithm and data preparation, but also the quality and the size of human inputs. Supervised learning 

models must be trained on a sufficiently large number instances to perform the tasks accurately. 

Unsupervised learning models requires careful selection of features and hyper-parameters to produce 

meaningful results. Semi-supervised learning models demands unambiguous operationalization of 

concepts by keywords in a similar way as dictionary analysis.   

 
9 Signed-chi squared statistic (or Keyness) computed by based on relative frequencies of words in two 
groups of documents helps researchers to find meaningful words (Bondi, 2010). 
10 Document similarity is usually computed as cosine or Euclidian similarity between a pair of vectors that 
records frequencies of words (“document vectors”), while word similarity is similarity between a pair of 
vectors that records their frequencies in documents (“word vectors”). 
11 For example, Naïve Bayes classifier, Wordscores (Benoit & Laver, 2003), support-vector machines and 
random trees are supervised learning models; Wordfish (Slapin & Proksch, 2008), Latent Dirichlet 
Allocation (Blei et al., 2003) and Structural Topic Model (Roberts et al., 2014) are unsupervised learning 
models; Seeded-LDA (Lu et al., 2011), Keyword-Assisted Topic Model (Eshima et al., 2020) and Latent 
Semantic Scaling (Watanabe, 2020) are semi-supervised learning models. 



Conclusions 
Quantitative text analysis has developed rapidly in the last 20 years thanks to the greater availability of 

software packages and libraries for natural language processing and new analysis techniques. However, 

there are issues that need to be addressed to further develop political research with the methodology.  

The main issues are the understudying of documents in non-English languages and the disconnection 

between machine learning results and political science concepts (Eshima et al., 2020; Watanabe & Zhou, 

2020). Political scientists can process non-English language texts with the recently developed software 

tools but cannot analyze them without lexical resources such as stopwords lists and dictionaries. Machine 

learning techniques has the great potential, but the state-of-art supervised learning models, especially 

deep learning models, often require too much manual inputs to train; unsupervised machine learning 

models do not always produce results meaningful to researchers. 

The lack of non-English lexical resources can be partially addressed by translating an English-language 

lexicon list into other languages.12 The connection between machine learning results and political science 

concepts can be reestablished by the semisupervided learning models that are considerably less expensive 

than fully supervised learning models; recent develop techniques to repurpose trained models (“transfer 

learning”) would also reduce the cost. Once these issues are address, researchers will be able to perform 

cross-national studies using quantitative text analysis and further enrich our knowledge of politics. 
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